

The Degree of Global-State Awareness in Self-Organizing Systems

Christopher Auer, Patrick Wüchner, and Hermann de Meer

University of Passau Department of Computer Science and Mathematics

Theoretical Computer Science Prof. Franz-Josef Brandenburg Computer Networks and Communications Prof. Hermann de Meer

December 10, 2009

Motivation: Intrusion Detection in Sensor Networks

The Degree of Global-State Awareness

Application to the Sensor Network

Conclusion and Future Work

Table of Contents

Motivation: Intrusion Detection in Sensor Networks

The Degree of Global-State Awareness

Application to the Sensor Network

Conclusion and Future Work

0 0 0 0()0 0 0 0()0 0 0 0 00 0 0 0 00 0 0 0 0

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ ()0 0 0 0()0 0 0 0 0 \mathbf{O} \mathbf{O} \mathbf{O} () $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ ()0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ ()0 0 0 0()()0 0 0 0 0

Motivation: Intrusion Detection in Sensor Networks

Motivation: Intrusion Detection in Sensor Networks

Using the Phase-Synchronization to Detect Intrusions

Christopher Auer, Patrick Wüchner, and Hermann de Meer | Email: christopher.auer@uni-passau.de Slide 5

Motivation: Intrusion Detection in Sensor Networks

Using the Phase-Synchronization to Detect Intrusions

Christopher Auer, Patrick Wüchner, and Hermann de Meer | Email: christopher.auer@uni-passau.de Slide 5

Motivation: Intrusion Detection in Sensor Networks

Motivation: Intrusion Detection in Sensor Networks

Motivation: Intrusion Detection in Sensor Networks

Intrusion Detection: Finding a global consensus

- ► > 1/5 of sensor give alarm ⇔ global consensus: Intrusion! (no false-positive)
- Each sensor
 - only observes its immediate neighborhood
 - takes appropriate actions depending on global consensus
- IWSOS 08: Derive appropriate local interaction strategies that use locally accessible information
- However: Is the necessary information distributed?
- How to choose α and $\Delta \phi$?
- Degree of Global-State Awareness

Table of Contents

Motivation: Intrusion Detection in Sensor Networks

The Degree of Global-State Awareness

Application to the Sensor Network

Conclusion and Future Work

- Events occur at discrete time steps $t \in \mathbb{N}_0$
- Finite set N of entities, each modeled as finite-state automata
- For all $t \in \mathbb{N}_0$ and $n \in \mathbf{N}$:

- Events occur at discrete time steps $t \in \mathbb{N}_0$
- Finite set N of entities, each modeled as finite-state automata
- For all $t \in \mathbb{N}_0$ and $n \in \mathbf{N}$:
 - ► state s_{t,n} and input i_{t,n}: local configuration γ_{t,n} = (s_{t,n}, i_{t,n})

- Events occur at discrete time steps $t \in \mathbb{N}_0$
- Finite set N of entities, each modeled as finite-state automata
- For all $t \in \mathbb{N}_0$ and $n \in \mathbf{N}$:
 - ► state s_{t,n} and input i_{t,n}: local configuration γ_{t,n} = (s_{t,n}, i_{t,n})
 - successor state s_{t+1,n} and output o_{t,n}

- Events occur at discrete time steps $t \in \mathbb{N}_0$
- Finite set N of entities, each modeled as finite-state automata
- For all $t \in \mathbb{N}_0$ and $n \in \mathbf{N}$:
 - ► state s_{t,n} and input i_{t,n}: local configuration γ_{t,n} = (s_{t,n}, i_{t,n})
 - successor state s_{t+1,n} and output o_{t,n}
 - Local history $\overleftarrow{\gamma}_{t,n} = (\gamma_{0,n}, \gamma_{1,n}, \dots, \gamma_{t,n})$

- Events occur at discrete time steps $t \in \mathbb{N}_0$
- Finite set N of entities, each modeled as finite-state automata
- For all $t \in \mathbb{N}_0$ and $n \in \mathbf{N}$:
 - ► state s_{t,n} and input i_{t,n}: local configuration γ_{t,n} = (s_{t,n}, i_{t,n})
 - successor state s_{t+1,n} and output o_{t,n}
 - Local history $\overleftarrow{\gamma}_{t,n} = (\gamma_{0,n}, \gamma_{1,n}, \dots, \gamma_{t,n})$
- State space of the system:
- \blacktriangleright Random initial configuration Γ_0 with range $\Gamma_0 \subseteq \Gamma$

► Random local history:
$$\overleftarrow{\Gamma}_{t,n}$$

Classification Problem

Communication of certain aspects of the system's state at t = 0 to the entities

Classification Problem

- Communication of certain aspects of the system's state at t = 0 to the entities
- Formalization of "aspects of the system's state":
 - Partition of Γ_0 into equivalence classes L:

$$\bigcup_{l \in \mathbf{L}} l = \mathbf{\Gamma}_0, \quad \forall l, l' \in \mathbf{L} : l \cap l' = \emptyset, \quad \forall l \in \mathbf{L} : l \neq \emptyset.$$

Random equivalence class L with range L

Classification Problem

- Communication of certain aspects of the system's state at t = 0 to the entities
- Formalization of "aspects of the system's state":
 - Partition of Γ_0 into equivalence classes L:

$$\bigcup_{l \in \mathbf{L}} l = \mathbf{\Gamma}_0, \quad \forall l, l' \in \mathbf{L} : l \cap l' = \emptyset, \quad \forall l \in \mathbf{L} : l \neq \emptyset.$$

- Random equivalence class L with range L
- Classification problem L: To which extent is it possible for the system entities' to derive L?

A Very Short Introduction to Shannon's Information Theory

• Entropy H[X] of random variable X (# $X < \infty$)

- Entropy H[X] of random variable X (#**X** < ∞)
- Mean amount of information...
 - ... to specify the outcome of X
 - ... that is provided when the outcome of X is known

- Entropy H[X] of random variable X (#**X** < ∞)
- Mean amount of information...
 - ... to specify the outcome of X
 - ... that is provided when the outcome of X is known

$$\blacktriangleright X \sim \text{UNI}(\mathbf{X}) \implies \text{H}[X] = \log_2 \# \mathbf{X} \text{ (maximum)}$$

- Entropy H[X] of random variable X (# $X < \infty$)
- Mean amount of information...
 - ... to specify the outcome of X
 - ... that is provided when the outcome of X is known

$$\triangleright X \sim \text{UNI}(\mathbf{X}) \implies \text{H}[X] = \log_2 \# \mathbf{X} \text{ (maximum)}$$

$$\blacktriangleright X \sim \delta_x(\mathbf{X}) \implies \mathrm{H}[X] = 0 \text{ (minimum)}$$

- Entropy H[X] of random variable X (# $X < \infty$)
- Mean amount of information...
 - ... to specify the outcome of X
 - ... that is provided when the outcome of X is known
- $\triangleright X \sim \text{UNI}(\mathbf{X}) \implies \text{H}[X] = \log_2 \# \mathbf{X} \text{ (maximum)}$
- $\blacktriangleright X \sim \delta_x(\mathbf{X}) \implies \mathrm{H}[X] = 0 \text{ (minimum)}$
- Measure of uncertainty of a random variable

- Entropy H[X] of random variable X (# $X < \infty$)
- Mean amount of information...
 - ... to specify the outcome of X
 - ... that is provided when the outcome of X is known
- $\blacktriangleright X \sim \text{UNI}(\mathbf{X}) \implies \text{H}[X] = \log_2 \# \mathbf{X} \text{ (maximum)}$
- $\blacktriangleright X \sim \delta_x(\mathbf{X}) \implies \mathrm{H}[X] = 0 \text{ (minimum)}$
- Measure of uncertainty of a random variable
- Conditional entropy H[X|Y] of X if Y is known:

$$\mathrm{H}[X|Y] = \mathrm{H}[X,Y] - \mathrm{H}[Y].$$

A Very Short Introduction to Shannon's Information Theory

- Entropy H[X] of random variable X (# $X < \infty$)
- Mean amount of information...
 - ... to specify the outcome of X
 - ... that is provided when the outcome of X is known
- $\blacktriangleright X \sim \text{UNI}(\mathbf{X}) \implies \text{H}[X] = \log_2 \# \mathbf{X} \text{ (maximum)}$
- $\blacktriangleright X \sim \delta_x(\mathbf{X}) \implies \mathrm{H}[X] = 0 \text{ (minimum)}$
- Measure of uncertainty of a random variable
- Conditional entropy H[X|Y] of X if Y is known:

$$\mathrm{H}[X|Y] = \mathrm{H}[X, Y] - \mathrm{H}[Y].$$

 $\blacktriangleright \ 0 \leq \operatorname{H}[X|Y] \leq \operatorname{H}[X]$

- Entropy H[X] of random variable X (# $X < \infty$)
- Mean amount of information...
 - ... to specify the outcome of X
 - ... that is provided when the outcome of X is known
- $\blacktriangleright X \sim \text{UNI}(\mathbf{X}) \implies \text{H}[X] = \log_2 \# \mathbf{X} \text{ (maximum)}$
- $\blacktriangleright X \sim \delta_x(\mathbf{X}) \implies \mathrm{H}[X] = 0 \text{ (minimum)}$
- Measure of uncertainty of a random variable
- Conditional entropy H[X|Y] of X if Y is known:

$$\mathrm{H}[X|Y] = \mathrm{H}[X,Y] - \mathrm{H}[Y].$$

- $\blacktriangleright \ 0 \leq \operatorname{H}[X|Y] \leq \operatorname{H}[X]$
- $H[X|Y] = H[X] \Leftrightarrow X$ and Y are independent

- Entropy H[X] of random variable X ($\# X < \infty$)
- Mean amount of information...
 - ... to specify the outcome of X
 - \blacktriangleright ... that is provided when the outcome of X is known
- $\succ X \sim \text{UNI}(\mathbf{X}) \implies \text{H}[X] = \log_2 \# \mathbf{X} \text{ (maximum)}$
- $\triangleright X \sim \delta_x(\mathbf{X}) \implies \operatorname{H}[X] = 0 \text{ (minimum)}$
- Measure of uncertainty of a random variable
- Conditional entropy H[X|Y] of X if Y is known:

$$\mathrm{H}[X|Y] = \mathrm{H}[X,Y] - \mathrm{H}[Y].$$

- \triangleright 0 < H[X|Y] < H[X]
- \blacktriangleright H[X|Y] = H[X] \Leftrightarrow X and Y are independent

$$\blacktriangleright \operatorname{H}[X|Y] = 0 \Leftrightarrow X = f(Y)$$

► To which extent can *L* be derived from entity's $n \in \mathbf{N}$ local history $\overleftarrow{\Gamma}_{t,n}$ until time step *t*?

- ► To which extent can *L* be derived from entity's $n \in \mathbf{N}$ local history $\overleftarrow{\Gamma}_{t,n}$ until time step *t*?
- Degree of global-state awareness observable at entity n at time step t:

$$\omega_{t,n}(\mathbf{L}) = 1 - \frac{\mathrm{H}[L|\overleftarrow{\Gamma}_{t,n}]}{\mathrm{H}[L]}$$

- ► To which extent can *L* be derived from entity's $n \in \mathbf{N}$ local history $\overleftarrow{\Gamma}_{t,n}$ until time step *t*?
- Degree of global-state awareness observable at entity n at time step t:

$$\omega_{t,n}(\mathbf{L}) = 1 - \frac{\mathrm{H}[L]\overleftarrow{\Gamma}_{t,n}]}{\mathrm{H}[L]}$$

► $\omega_{t,n}(\mathbf{L}) \in [0,1]$

 \cap

 $\cap \cap \cap$

The Degree of Global-State Awareness

- ► To which extent can *L* be derived from entity's $n \in \mathbf{N}$ local history $\overleftarrow{\Gamma}_{t,n}$ until time step *t*?
- Degree of global-state awareness observable at entity n at time step t:

$$\omega_{t,n}(\mathbf{L}) = 1 - \frac{\mathrm{H}[L]\overleftarrow{\Gamma}_{t,n}]}{\mathrm{H}[L]}$$

$$\omega_{t,n}(\mathbf{L}) \in [0,1]$$

$$\omega_{t,n}(\mathbf{L}) = 1 \Leftrightarrow L = f(\overleftarrow{\Gamma}_{t,n})$$

 \cap

 $\cap \cap \cap$

The Degree of Global-State Awareness

- ► To which extent can *L* be derived from entity's $n \in \mathbf{N}$ local history $\overleftarrow{\Gamma}_{t,n}$ until time step *t*?
- Degree of global-state awareness observable at entity n at time step t:

$$\omega_{t,n}(\mathbf{L}) = 1 - \frac{\mathrm{H}[L]\overleftarrow{\Gamma}_{t,n}]}{\mathrm{H}[L]}$$

- ► To which extent can *L* be derived from entity's $n \in \mathbf{N}$ local history $\overleftarrow{\Gamma}_{t,n}$ until time step *t*?
- Degree of global-state awareness observable at entity n at time step t:

$$\omega_{t,n}(\mathbf{L}) = 1 - \frac{\mathrm{H}[L|\overleftarrow{\Gamma}_{t,n}]}{\mathrm{H}[L]}$$

► For the whole system:

$$\omega(\mathsf{L}) = \frac{1}{\#\mathsf{N}} \lim_{t \to \infty} \sum_{n \in \mathsf{N}} \omega_{t,n}(\mathsf{L})$$

Table of Contents

Motivation: Intrusion Detection in Sensor Networks

The Degree of Global-State Awareness

Application to the Sensor Network

Conclusion and Future Work

Calculation of ω for the Sensor Network

- ► Initial configurations Γ_0 : $\phi(0) = 0$ for all sensors, except for the group of sensors with $\phi(0) = \Delta \phi$ that detected an event
- ▶ Classification problem $\mathbf{L} = \{l_{\leq 1/5}, l_{>1/5}\}$

Calculation of ω for the Sensor Network

- Initial configurations Γ₀: φ(0) = 0 for all sensors, except for the group of sensors with φ(0) = Δφ that detected an event
- Classification problem $\mathbf{L} = \{I_{\leq 1/5}, I_{>1/5}\}$
- ► Sensing range: Manhattan distance ≤ 2

Influence of $\Delta \phi$

Influence of $\Delta \phi$

Influence of α

• Convergence time is proportional to $1/\alpha$

Influence of α

• Convergence time is proportional to $1/\alpha$

 $\blacktriangleright \alpha$ too large: Information about L has no time to spread

Influence of α

• Convergence time is proportional to $1/\alpha$

- $\blacktriangleright \alpha$ too large: Information about L has no time to spread
- $\blacktriangleright \ \alpha$ too low: Convergence time too long

VERSITÄT

Motivation: Intrusion Detection in Sensor Networks

The Degree of Global-State Awareness

Application to the Sensor Network

Conclusion and Future Work

Conclusion and Future Work

Conclusion and Future Work

Christopher Auer, Patrick Wüchner, and Hermann de Meer | Email: christopher.auer@uni-passau.de Slide 17

- Conclusion
 - Entities observe their immediate neighborhood
 - To which extent can the entities derive global-state properties?
 - Degree of Global-State Awareness
 - Intrusion detection in sensor networks
 - Preferable system parameters
 - Influence of convergence time

Conclusion and Future Work

Conclusion and Future Work

- Conclusion
 - Entities observe their immediate neighborhood
 - To which extent can the entities derive global-state properties?
 - Degree of Global-State Awareness
 - Intrusion detection in sensor networks
 - Preferable system parameters
 - Influence of convergence time
- Future Work
 - Application to other application scenarios
 - Formalization of other properties of self-organizing systems
 - Address scalability issues
 - Application to cellular automata

Conclusion and Future Work

Conclusion and Future Work

- Conclusion
 - Entities observe their immediate neighborhood
 - To which extent can the entities derive global-state properties?
 - Degree of Global-State Awareness
 - Intrusion detection in sensor networks
 - Preferable system parameters
 - Influence of convergence time
- Future Work
 - Application to other application scenarios
 - Formalization of other properties of self-organizing systems
 - Address scalability issues
 - Application to cellular automata

